California State University
SAN MARCOS

Calculus

Problem 1: Building a Fence

A farmer wants to fence in an area of 13.5 million square feet in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the cost of the fence?

1 Draw a picture and label your variables:

3 Solve equation (2) for one of the variables:

$$
\begin{align*}
x y & =13,500,000 \\
x & =\frac{13,500,000}{y} \tag{3}
\end{align*}
$$

5 Take the derivative of the equation found in step 4, set this equal to zero and solve:

$$
\begin{aligned}
C^{\prime}(y) & =\frac{27,000,000}{y^{2}}+3 \\
0 & =\frac{27,000,000}{y^{2}}+3 y^{2} \\
0 & =3\left[\frac{9,000,000}{y^{2}}+1\right] \\
0 & =\frac{9,000,000}{y^{2}}+1 \\
y^{2} & =9,000,000 \\
y & =3,000
\end{aligned}
$$

2 Create two equations (cost and area) based on the given data and your picture:

$$
\begin{gather*}
C=2 x+3 y \tag{1}\\
x y=13,500,000 \quad f t^{2} \tag{2}
\end{gather*}
$$

4 Substitute x into equation (1):

$$
\begin{aligned}
C(y) & =2\left[\frac{13,500,000}{y}\right]+3 y \\
& =\frac{27,000,000}{y}+3 y
\end{aligned}
$$

6 Substitute y into to equation (3):

$$
\begin{aligned}
& x=\frac{13,500,000}{3000} \\
& x=4500
\end{aligned}
$$

This means that the farmer should build his fence with a length of $3000 \mathrm{ft}^{2}$ and a width of $4500 \mathrm{ft}^{2}$ to use the shortest total length of fence for an area of $13,500,000 \mathrm{ft}^{2}$.
xxx
(0)@csusm_stemcenter

Calculus

Problem 2: Volume

We want to construct a box whose base length is 4 times the base width. The material used to build the top and bottom cost $\$ 6.00 / f t^{2}$ and the material used to build the sides cost $\$ 21.60 / f t^{2}$. If the box must have a volume of $1296 \mathrm{ft}^{3}$, determine the dimensions that will minimize the cost to build the box.

1 Draw a picture and label your variables:

$l=4 w$

2 Create two equations (cost and volume) based on the given data and your picture:

$$
\begin{align*}
& \quad V=l w h=4 w^{2} h=1296 \quad f t^{3} \tag{1}\\
& C=6.00(2 l w)+21.60(2 w h+2 l h) \\
& C=6.00\left(8 w^{2}\right)+21.60(2 w h+8 w h) \\
& C=48 w^{2}+216 w h \tag{2}
\end{align*}
$$

3 Solve equation (1), $1296=4 w^{2} h$, for h :

$$
\begin{aligned}
1296 & =4 w^{2} h \\
h & =\frac{1296}{4 w^{2}}
\end{aligned}
$$

5 Take the derivative of the equation found in step 4 , set this equal to zero and solve:

$$
\begin{aligned}
C(w) & =48 w^{2}+69984 w^{1} \\
C^{\prime}(w) & =96 w \quad 69984 w^{2} \\
0 & =\frac{96 w^{3} \quad 69984}{w^{2}}
\end{aligned}
$$

Setting the denominator to zero gives a width of zero. We can ignore this because a box cannot have zero width.

$$
\begin{aligned}
96 w^{3} & =69984 \\
w^{3} & =729 \\
w & =9
\end{aligned}
$$

4 Substitute h into equation (2):

$$
\begin{aligned}
& C(w)=48 w^{2}+216 w\left(\frac{1296}{4 w^{2}}\right) \\
& C(w)=48 w^{2}+\frac{69984}{w}
\end{aligned}
$$

6 Substitute w into equation (1):

$$
\begin{aligned}
1296 & =4(9)^{2} h \\
1296 & =324 h \\
4 & =h
\end{aligned}
$$

Using both w and h in $1296=l w h$ again gives:

$$
\begin{aligned}
1296 & =l \times 4 \times 9 \\
1296 & =36 l \\
36 & =l
\end{aligned}
$$

This means that the the box should be constructed to be 36 ft long, 9 ft wide and 4 ft high to minimize the cost.

As a bonus, we can use these values to find how much this box would cost to make!

$$
\begin{aligned}
C(9) & =48(9)^{2}+216(9)(4) \\
& =3888+7776 \\
& =11664
\end{aligned}
$$

This means it would cost at least $\$ 11,664$ to construct this box.
csusm.edu/stemsc
© @csusm_stemcenter
Tel:

